Pre-class Warm-up!!!
Find the best way to complete the sentence:
One Joule is
a. the force required to accelerate 1 gram at 1 $\mathrm{cm} / \mathrm{sec}$
b. the energy required to raise the temperature of 1 cubic centimeter of water by 1 degree centigrade
c. the work done in lifting 1 kilogram through 1 meter
d. the work done by 1 Newton moving a distance of 1 meter
e. None of the above. Maybe a type of candy.

Does Joule have a capital J Yes

### 7.1 The path integral 7.2 The line integral

We learn:

- Two closely related integrals along a path or curve
- How to set them up and evaluate them
- Physical interpretation
- Different notation for these integrals
- Orientation of a curve
- Theoretical things: independence of the parametrization of the curve (up to orientation for line integrals); Riemann sums.
- The line integral of a gradient vector field

We do not need to know:

- Total curvature in 7.1
- Simple curves, closed curves in 7.2
- You are not tested on the 'theoretical things'.

Types of question:

- mainly evaluate the integrals

The two kinds of integral

Both take a path $\mathrm{c}:[\mathrm{a}, \mathrm{b}]->\mathrm{R} \wedge \mathrm{n}$
(In the book $\mathrm{n}=3$.)
We want to assume $c^{\prime}(t) \neq 0$ always.
Thus c traces along the curve from one end to the other, without retracing itself.

The orientation of $c$ is the direction in which we travel along the curve. There are two possible onentations.

For the path integral in 7.1 we take a scalar function $f: R \wedge n \rightarrow R$ and $\int_{c}^{\text {define }} f d s=\int_{a}^{b} f(c(t))\left\|c^{\prime}(t)\right\| d t$

If $f(c(t))=1$ for all $t$ we get
the length of the curve between $t=a$ and $t=b$. Generally, we

get the wiry. area under the graph of $f$.

For the line integral in 7.2 we take a vector field $F: R \wedge n \rightarrow R^{\wedge} n$ and define

$$
\begin{aligned}
& \int_{c} F \cdot d \underline{s}=\int_{a}^{b} F(c(t)) \cdot c^{\prime}(t) d t \\
&=\int_{c} F_{1} d x_{1}+F_{2} d x_{2}+\cdots+F_{n} d x_{n}
\end{aligned}
$$

The last and first integrals are notation.
Think $d x_{v}=\frac{d c_{i}}{d t} \cdot d t=c_{i}^{\prime} d t$ and $d s=c^{\prime}(t) d t$.

Physical interpretation: Work done by the force field moving from $t=a$ to $t=x$.

Questions in 7.1
These are either: find a parametrization of a given curve. Sometimes it is given in pieces and you have to parametrize it in pieces. Or: evaluate the integral.

Like question 10.
A wire is bent into a helix parametrized by $c(t)=(\cos t, \sin t, t)$ where $0 \leq t \leq \pi$. The wire has variable line-density that is $x y+z$ at position $(x, y, z)$. Find the mass of the wire.
Line density could be measured in g/cm The mass is

$$
\int_{c}(x y+z) d s=\int_{0}^{\pi}(x y+z)\left\|c^{\prime}(t)\right\| d t
$$

$$
\begin{aligned}
& =\int_{0}^{\pi}(\cos t \sin t+t) \sqrt{\sin ^{2} t+\cos ^{2} t+1^{2}} d t \\
& =\left[\left(\frac{1}{2} \sin ^{2} t+\frac{t^{2}}{2}\right) \sqrt{2}\right]_{0}^{\pi} \\
& =\left(0+\frac{\pi^{2}}{2}-0-0\right) \sqrt{2}=\frac{\pi^{2} \sqrt{2}}{2}
\end{aligned}
$$

Physical interpretation:
Area under the curvy graph.

Questions in 7.2
These are: calculate the integral
Like Question 5:
Calculate the work done by the force field $F(x, y, z)=(y,-x, z)$ in moving a particle along the parabola $y=x \wedge 2, z=0$ from $x=-1$ to $x=2$.


Stew 1: parametrize the parabola

$$
\begin{aligned}
& c(t)=\left(t, t^{2}, 0\right) \quad-1 \leqslant t \leqslant 2 \\
& c^{\prime}(t)=(1,2 t, 0)
\end{aligned}
$$

The work dore is $\int_{-1}^{2}(y,-x, z) \cdot(1,2 t, 0) d t$

$$
\begin{aligned}
& =\int_{-1}^{2}\left(t^{2},-t, 0\right) \cdot(1,2 t, 0) d t \\
& =\int_{-1}^{2}-t^{2} d t=\left[-\frac{t^{3}}{3}\right]_{-1}^{2} \\
& =\frac{-8}{3}-\frac{1}{3}=-3
\end{aligned}
$$

Question: What does it mean if the work done by a force field is negative?
a. the question was wrong
b. the method of doing the question was wrong
c. energy was transferred from the particle
d. energy was transferred to the particle
e. None of the above.

Theorems 1 and 2 of 7.2
Suppose c and p are two parametrization of the same curve, with the same orientation. Then

$$
\int_{c} F \cdot d \underline{s}=\int_{p} F \cdot d \underline{s}
$$

If $c$ and $p$ have the opposite orientation then

$$
\int_{c} F \cdot d \underline{s}=-\int_{p} F \cdot d \underline{s}
$$

In either case

$$
\int_{c} f d s=\int_{p} f d s
$$

Theorem 3 of 7.2
Let $f: R \wedge n \rightarrow R$ and let $c:[a, b]->R \wedge n$ be a path.

$$
\text { Then } \int_{c} \nabla f \cdot d s \quad=f(c(b))-f(c(a))
$$

Proof.

$$
\begin{aligned}
& \int \nabla f \cdot d s= \\
& c=c(a) \\
& \left.=\int_{a}^{b} \frac{\partial f}{\partial x_{1}}, \cdots \frac{\partial f}{\partial x_{n}}\right) \cdot\left(f_{1}^{\prime}(t), \ldots, c_{n}^{\prime}(t)\right) d t \\
& =\int_{a}^{b} D f(c(t)) \cdot c^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t} f(c(t)) d t \\
& =f(c(b))-f(c(a))
\end{aligned}
$$

Example
Find the work done by $F(x, y)=\left(2 x y, x^{\wedge} 2\right)$ in moving along the path $c(t)=\left(\sqrt{ }(1+t \wedge 2), e^{\wedge}(\sin t)\right)$ from $t=0$ to $t=1$.
solution $F(x, y)=\nabla f$ where

$$
\begin{aligned}
& f(x, y)=x^{2} y \quad 0 \\
& \begin{aligned}
\int_{c} F \cdot d s & =f(c(1))-f(c(0)) \\
& =f\left(\sqrt{2}, e^{\sin (1)}\right)-f(1,1) \\
& =2 e^{\sin (1)}-1
\end{aligned}
\end{aligned}
$$

